

Towards a Reference Framework for the processing of mobile network operator data for official statistics

Mihail Skaliotis & Fabio Ricciato EUROSTAT Task Force on Big Data Dubai, 21.10.2018

Motivations

15+ years of research on case-study shows that MNO data have potential for Official Statistics ©

but 🕝

- no unified/systematic methodology (clutter of ad-hoc methods for specific case-studies)
- poor reproducibilty, difficult portability
- rigidity, lack of evolvability
- some legal aspects still unclear (privacy & business confidentiality)
- *no cross-domain analysis (multi-MNO)*

MNO : mobile network operators

Our Goals

Develop a unified methodological view:

Reference Methodological Framework [RMF] for processing MNO data for Official Statistics

in order to:

- facilitate interworking MNO-ESS at technical & organisational level
- ensure consistency, reproducibility, **evolvability** and portability of processing methods (between MNOs and NSIs)
- provide concrete basis to clarify legal aspects (\rightarrow GDPR)
- enable multi-MNO analysis (fusion of data from different MNO)

MNO: Mobile Network Operator ESS: European Statistical System

- CN: Core Network
- RAN: Radio Access Network
- BSA: Best Service Area

More informative

higher spatial resolution higher temporal frequency better coverage

VALUE

Cost vs. (perceived) value trade-off varies in time

COST

Ongoing work by EUROSTAT: staged approach

Single MNO

- definition of a reference layered architecture (hourglass model) and common data structures (C-layer)
- clarification of GDPR aspects

Multiple MNOs with output data fusion on NSI (silos model)

 testing and possible refinement of reference layered architecture across heterogeneous network operation settings Multiple MNOs with *input* data fusion (via SMPC)

- definition of reference architecture for Secure Multi-Pparty Computation
- clarification of GDPR aspects related to SMPC

SMPC: Secure Muti-Party Computation

Stage 1 scenario

Stage 2 scenario

Stage 1 goals

- Define the Reference Methodological Framework (RMF) for a single MNO data stream
- Proof-of-concept application of RMF on selected use-case
 - population density (ongoing work 2018)
 - tourism (next year)
- Clarify GDPR aspects
 - started dialogue with European Data Protection Supervisor

non-technical challenges technical challenges

- Collaboration EUROSTAT-Proximus
- Dedicated WP in future ESSnet on Trusted Smart Statistics

Hourglass model

Statistics S-Layer Heterogeneity of applications & use-cases Diversity of statistical definitions Complexity of statistical objects Multiple NSIs

Convergence C-layer Few common definitions

MNO Data D-Layer Data Heterogeneity Diversity of data collection methods Complexity of data semantics Multiple MNOs Domain of Expertise Telco Engineers, MNO

Domain of Expertise

Statisticians, NSI

Benefits of layering

Decouples the complexity & heterogeneity of the two domains

- Hides complexity & heterogeneity of MNO data to statisticians
- Hides complexity & heterogeneity of statistical concepts to MNO engineers

Decoupling allows for independent **development, adoption** & **evolution** at each domain

Requirements for C-layer

Parsimony, Clarity

 Few definitions that are understood and accepted by experts of both domains

Feasibility

 C-layer structures must represent what can be realistically obtained from underlying MNO data

Sufficiency

- C-layer structures must be informative for the use-cases above *Generality*
 - Not tailored to specific MNO dataset and/or use-case here&now: basis for long-term adoption & evolution

Domain of Expertise Statisticians, NSI

The C-layer is ...

The C-layer

is an abstract "interface" between knowledge domains (statisticians – telecom engineers) it is relevant for the **design** of processing method (algorithm)

it is NOT a physical interface for data export! (such interface, relevant for the execution of the computation process, is logically placed within the S-layer)

NB: the MNO-to-NSI exporting interface is within the S-layer!

algorithm design vs execution

Stage 1 scenario

Stage 1 scenario

C-layer as a common substratum for MNO data users

NSI A

Convergence Layer

non-personal data

processing components

C-layer as a continon substratum for MNO data users

Thanks for your attention

For follow-up:

fabio.ricciato@ec.europa.eu

